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Today’s modern industries have found a wide array of applications for optimization methods based on
modeling with Robust Parameter Designs (RPD). Methods of carrying out RPD have thus multiplied.
However, little attention has been given to the multiobjective optimization of correlated multiple
responses using response surface with combined arrays. Considering this gap, this paper presents a mul-
tiobjective hybrid approach combining response surface methodology (RSM) with Principal Component
Analysis (PCA) to study a multi-response dataset with an embedded noise factor, using a DOE combined
array. How this approach differs from the most common approaches to RPD is that it derives the mean
and variance equations using the propagation of error principle (POE). This comes from a control-noise
response surface equation written with the most significant principal component scores that can be used
to replace the original correlated dataset. Besides the dimensional reduction, this multiobjective
programming approach has the benefit of considering the correlation among the multiple responses
while generating convex Pareto frontiers to mean square error (MSE) functions. To demonstrate the
procedure of the proposed approach, we used a bivariate case of AISI 52100 hardened steel turning
employing wiper mixed ceramic tools. Theoretical and experimental results are convergent and confirm
the effectiveness of the proposed approach.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

In recent years, considerable attention has been given to Robust
Parameter Design (RPD). Initially proposed by Taguchi (1986), RPD
is an approach that determines the optimal settings of process
variables, combining designed experiments (mainly orthogonal
arrays – OA) with some kind of optimization algorithm. RPD aims
to make processes less sensitive to the action of noise variables, to
improve variability control, and to refine bias correction (the
difference between a process mean and a target value; Ardakani
& Noorossana, 2008; Quesada & Del Castillo, 2004; Shin,
Samanlioglu, Cho, & Wiecek, 2011). Originally developed from a
crossed-array – a combination of an inner array formed by control
variables and an outer orthogonal array consisting of noise factors
– this methodology remains controversial mainly due to its various
mathematical flaws and statistical inconsistencies (Nair, 1992).
Nevertheless, few researchers disagree on the idea that optimizing
the process mean and variance, simultaneously, can achieve qual-
ity assurance (Shin et al., 2011).

The main drawback of this controversial approach is related to
the inability of a crossed-array to measure the interaction between
control and noise variables (Quesada & Del Castillo, 2004). To over-
come this, Shoemaker, Tsui, and Wu (1991), Box and Jones (1992),
Myers, Khuri, and Vining (1992), Welch, Yu, Kang, and Stokes
(1990) and Lucas (1991) studied combined array, as an alternative
approach to the crossed array, which contains the settings of both
the control and noise factors. Central composite design (CCD), pro-
posed by Box and Wilson (1951), with combined array was studied
by Myers et al. (1992). The CCD generates the mean and variance
equation from the propagation of the error principle. Quesada
and Del Castillo (2004) attribute the first formulations involving
the use of RSM for RPD to Box and Jones (1992) and Vining and
Myers (1990).

The general scheme of an RPD–RSM problem consists of per-
forming an experimental design with the noise factors considered
as control variables and of eliminating from the design the axial
points related to the noise factors. Doing so, one can use the ordin-
ary least squares algorithm to fit the polynomial surface for f(x,z)
and thus obtain its partial derivatives. This procedure leads to
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the mean and variance equations for a single response, considering
the noise-control factor interactions.

To obtain a product’s quality, however, most industrial applica-
tions call for more than one response to be simultaneously
optimized (Kazemzadeh, Bashiri, Atkinson, & Noorossana, 2008).
Yet few studies have been devoted to the RPD concept for multiple
responses (Paiva et al., 2012; Quesada & Del Castillo, 2004), when
these responses are correlated (Govindaluri & Cho, 2007; Paiva,
Paiva, Ferreira, Balestrassi, & Costa, 2009). Even in the works
involving multivariate approaches, the noise-control interactions
are generally neglected and the mean and variance equations come
from crossed arrays or design replicates (Govindaluri & Cho, 2007;
Jeong, Kim, & Chang, 2005; Kovach & Cho, 2009; Lee & Park, 2006;
Paiva et al., 2012; Shaibu & Cho, 2009; Shin et al., 2011; Tang & Xu,
2002). The presence of correlation in the multiple responses causes
the model’s instability, over-fitting, and errors in the regression
coefficients, which can substantially modify the optimization
results (Box, Hunter, MacGregor, & Erjavec, 1973; Bratchell,
1989; Khuri & Conlon, 1981; Wu, 2005; Yuan, Wang, Yu, & Fang,
2008). Dual Response Surface (DRS) derived from f(x,z) may be
an alternative in modeling the interaction between control and
noise variables. DRS is a class of RSM problems in which the mean
and variance equations are obtained defining a response surface for
the mean ŷðxÞ and another for the variance r̂2ðxÞ, using replicates,
crossed or combined arrays. The correlation, however, can substan-
tially influence the values of the f(x,z) regression coefficients (bi).
Such influence consequently impairs the quality of the Dual
Response Surface (DRS) derived from f(x,z). One may deal with this
impeding correlation influence by employing Principal Compo-
nents Analysis (PCA).

Considering correlation structure among response variables,
this paper presents a multiobjective hybrid approach of RPD com-
bining RSM and PCA. This multivariate approach rotates the refer-
ence axes of correlated random variables to form new axes of
random and uncorrelated variables. A multi-response dataset with
an embedded noise factor is investigated by using a DOE-combined
array. The RSM-PCA approach proposed here differs from the most
commonly proposed RPD approaches in that the mean and vari-
ance equations of principal component scores are obtained from
a control-noise response surface equation, based on propagation
of error principle (POE). Besides reducing dimensions, this multi-
objective programming approach presents two other advantages:
(i) it considers the correlation among the multiple responses;
and (ii) it generates convex Pareto frontiers to mean square
error (MSE) functions. This latter characteristic plays a crucial
role in optimization theory because the convex sets allow attain-
ment of optimality. Moreover, the weighted approach of principal
components have already been utilized by some authors (Gomes,
Paiva, Costa, Balestrassi, & Paiva, 2013; Paiva, Costa, Paiva,
Balestrassi, & Ferreira, 2010; Peruchi, Balestrassi, Paiva, Ferreira,
& Carmelossi, 2013) assessing multivariate processes.

To illustrate the proposal, the study used a bivariate case of AISI
52100 hardened steel turning employing wiper mixed ceramic
tools. Theoretical and experimental results are convergent and
confirm the adequacy of the paper’s proposal.

2. Robust optimization of quality characteristics

DRS is, as noted earlier, a class of RSM problems. In DRS, the
mean and variance equations are obtained – using replicates,
crossed, or combined arrays – so as to define one response surface
to the mean ŷðxÞ and another to the variance r̂2ðxÞ. These functions,
usually written as an OLS second-order model, may be optimized
simultaneously considering different schemes (Del Castillo, Fan, &
Semple, 1999; Kazemzadeh et al., 2008). Vining and Myers (1990)
established an optimization figure considering Minx2Xr̂2ðxÞ, subject
to the constraint of ŷðxÞ ¼ T , where T is the target for ŷðxÞ; using a
Lagrangean multiplier approach, it evaluated only one quality char-
acteristic. Shin and Cho (2005) presented a bias-specified robust
design method formulating a nonlinear optimization program that
minimized process variability subject to customer-specified con-
straints on the process bias, such as jŷðxÞ � Tj 6 e.

In several works, however, the most common choice is the
combination of mean, variance, and target, using the minimization
of the mean square error (MSE). The MSE is an objective function
subjected only to the experimental region constraint, such as
Minx2X ½ŷðxÞ � T�2 þ r̂2 (Cho & Park, 2005; Kazemzadeh et al., 2008;
Kovach & Cho, 2009; Lee & Park, 2006; Lin & Tu, 1995; Paiva et al.,
2012; Shin et al., 2011; Steenackers & Guillaume, 2008). Supposing
that mean and variance can have different degrees of importance,
the MSE objective function can also be weighted, as MSEw ¼
x1 � ðŷðxÞ � TÞ2 þx2 � r̂2ðxÞ, where the weights x1 and x2 are pre-
specified positive constants (Box & Jones, 1992; Kazemzadeh et al.,
2008; Lin & Tu, 1995; Tang & Xu, 2002). Still, these weights can be
experimented with using different convex combinations, i.e.,
x1 + x2 = 1, with x1 > 0 and x2 > 0, generating a set of non-inferior
solutions for multiple objective optimization (Tang & Xu, 2002).

Note, however, that the examples above treat only one quality
optimization. Analogously, when there are several quality charac-
teristics to optimize, the MSE criterion can be extended to multiob-
jective problems using some kind of agglutination’s operator, for
instance, a weighted sum, as suggested by Busacca, Marseguerra,
and Zio (2001) and Yang and Sen (1996). In this case, MSE becomes

MSET ¼
Pp

i¼1 ðŷi � TiÞ2 þ r̂2
i

h i
. Nevertheless, if different degrees of

importance (wi) are desired for each MSEi, the weighted global
objective function can be written as proposed by Köksoy and
Yalçınoz (2006) and Köksoy (2006):

MSET ¼
Xp

i¼1

wi �MSEi ¼
Xp

i¼1

wi � ðŷi � TiÞ2 þ r̂2
i

h i
ð1Þ

The aforementioned ideas may then be combined, and a mean
square error approach for the multiobjective problem involving
DRS models would be written as:

MSET ¼
Xp

i¼1

wi x � ðŷi � TiÞ2 þ ð1�xÞ � r̂2
i

h i
ð2Þ

In this expression, x is the weight to prioritize either mean or
variance and wi is the same weight described in Eq. (1). As a matter
of comparison, Eq. (2) is referred to as ‘‘Weighted Sum’’ (WSum).

None of the aforementioned formulations takes into account the
correlation structure that may be present in the matrix of responses.
Again, such correlation structure may significantly jeopardize the
optimization results. Considering the correlation among responses
and the bias criteria, Vining (1998) presented the minimization of
a multivariate expected loss function as a multiobjective function:

Min E ½L½ŷðxÞ; h�� ¼ ½E½ŷðxÞ� � h�T C½E½ŷðxÞ� � h� þ trace½C
X

ŷ

ðxÞ� ð3Þ

where x represents a vector of controllable design variables, ŷðxÞ is
the vector of estimated response, C is a p � p positive defined
matrix of costs (or weights) associated with the losses incurred
when ŷðxÞ deviates from their respective targets h, and Rŷ is the
estimated variance–covariance matrix. Likewise, Chiao and
Hamada (2001) proposed a multivariate integration approach as a
correlated multi-response optimization method. Using a specified
region of responses, the optimal solution does not take into consid-
eration the targets. This formulation is written as:

Max PðY 2 SÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j
P
jð2pÞm

p Z b1

a1

Z b2

a2

� � �
Z bm

am

e�
1
2ðY�lÞT

P�1
ðY�lÞdY

" #

subject to : xTx 6 q2

ð4Þ
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where Y is the vector of multiple responses, S is the specified region
for all responses formed by the lower bounds ai and upper bounds
bi,
P

is an m �m symmetric positive definite variance–covariance
matrix and xTx 6 q2 denotes a constraint for the experimental
region. Govindaluri and Cho (2007) presented a proposal for multi-
objective robust designs by applying the concept of Lp metrics
(Ardakani & Noorossana, 2008) to several correlated characteristics
with fi(x) = MSEi(x). The authors stated the objective functions and
constraints as:

Min b

subject to : giðxÞ ¼ wi �
MSEiðxÞ �MSEI

iðxÞ
MSEmax

i ðxÞ �MSEI
iðxÞ

 !
6 b

xTx 6 q2

b P 0
i ¼ 1;2; . . . ; p

ð5Þ

with : MSEiðxÞ ¼ ðŷiðxÞ � TiÞ2 þ r̂2
i ðxÞ þ

Xi�1

j¼1

r̂iðxÞ
r̂iðxÞ þ r̂jðxÞ

� ½r̂ijðxÞ

þ ðŷiðxÞ � TiÞ � ðŷjðxÞ � TjÞ� ð6Þ

In this formulation, wi is the weight associated to each
constraint gi(x) referring to the scaled MSEi(x) functions. MSEI

iðxÞ
corresponds to the individual optimization of each MSEi(x) (utopia
value), only constrained to the experimental region. The denomi-
nator in Eq. (5), MSEmax

i ðxÞ �MSEI
iðxÞ, stands for the normalization

of multiple responses, using MSEmax
i ðxÞ as the maximum value of

the payoff matrix (matrix formed by all solutions observed in the
individual optimizations). The set of constraints gi (x) P 0 can rep-
resent any desired restriction, but it is generally used to designate
the experimental region. It is straightforward that this proposal
establishes the empirical models for the mean, variance, and
covariance in terms of design factors, but it is commonly done
using crossed arrays. For sake of comparison, this model is used
in this work and is referred to as ‘‘Beta’’ approach.

3. Principal Component Analysis on multiobjective
optimization

A common concern with multiobjective MSE optimization is
related to the convexity of the Pareto frontiers generated using
weighted sums. According to Shin et al. (2011), in most RPD appli-
cations, a second-order polynomial model is adequate to accom-
modate the curvature of the process mean and variance
functions, thus mean-squared robust design models would contain
fourth-order terms. Consequently, the associated Pareto frontier
might be non-convex and non-supported efficient solutions could
be generated. It is important to state that a decision vector x⁄ 2 S
is Pareto optimal if no other x 2 S exists such that fi(x) 6 fi(x⁄) for
all i = 1,2, . . .,k.

Suppose now that the multiple objective functions f1(x), f2

(x), . . ., fp(x) are correlated response surfaces written as a random
vector YT = [Y1,Y2, . . .,Yp]. Assuming that R is the variance–covari-
ance matrix associated with this vector, then R can be factorized
in pairs of eigenvalues–eigenvectors (ki,ei), . . .P (kp,ep), where
k1 P k2 P . . . P kp P 0, such as the ith principal component
may be stated as PCi ¼ eT

i Y ¼ e1iY1 þ e2iY2 þ . . .þ epiYp, with
i = 1,2, . . .,p (Johnson & Wichern, 2002). This uncorrelated linear
combination can be calculated using the PCA approach, based on
variance–covariance matrix. In similar manner, the correlation
matrix considers [Z] the standardized data matrix and [E] the eigen-
vectors matrix of multivariate set, then each principal component
score can be obtained as PCi = [Z]T[E] (Paiva et al., 2009). Bear upon
these scores, the DOE analysis can be performed (Liao, 2006).
Bratchell (1989) was the first researcher to employ a second-
order response surface model to adequately represent the original
set of responses in a small number of latent variables. His work,
however, did not contemplate the computation of specification
limits and targets of each response represented in the plane of
principal components. To fill this gap, Paiva et al. (2009) proposed
the Multivariate Mean Square Error (MMSE) method, an approach
capable of computing the response’s targets and respective devia-
tions for the second-order models of principal component scores.
Once modeled, the objective functions may be aggregated using a
geometric mean, which in turn often leads to continuous Pareto
frontiers. In general, the number of equations obtained to replace
the original set is smaller than the initial amount, obviously
depending on the strength of the variance–covariance structure.
By associating an experimental region constraint, the MMSE opti-
mization can be written as (Lopes et al., 2013; Paiva et al., 2009):

Min MMSET ¼
Ym
i¼1

ðMMSEijki P 1Þ
" # 1

mð Þ
¼

Ym
i¼1

½ðPCi� fPCi
Þ2þkijki P 1�

( ) 1
mð Þ
; m6 p

subject to : xTx6q2

ð7Þ

with : MMSEi¼ðPCi� fPCi
Þ2þki ð8Þ

fPCi
¼ eT

i ½ZðYpjfYp Þ� ¼
Xp

i¼1

Xq

j¼1

eij½ZðYpjfYp Þ� i¼1;2; . . . ; p; j¼1;2; . . . ; q ð9Þ

where m is the number of MMSE functions according to the signif-
icant principal components, PCi is the fitted second-order polyno-
mial, fPCi

is the target value of the ith principal component (that
must keep a straightforward relation with the targets of the original
data set), xTx 6 q2 is the experimental region constraint, ei repre-
sents the eigenvector set associated to the ith principal component,
and fYp represents the target for each of the p original responses.

PCA generally reduces the problem dimension according to the
strength of variance–covariance structure among the responses
and, eventually, it is possible to consider principal components
with k < 1, since the total explanation achieves 80% (Johnson &
Wichern, 2002).

The next section will present, in consideration of what has just
been discussed, a multivariate multiobjective optimization method
for DRS problems. The method uses the POE derivations of mean
and variance response surfaces built with the dataset of a central
composite design (CCD), in the form of a combined array.

4. Multivariate robust parameter optimization for combined
arrays

Taguchi proposed that a reasonable route to robust optimiza-
tion would be to do the following: summarize the data from a
crossed array experiment with the mean of each observation in
the inner array across all runs in the outer array being combined
in the signal-to-noise ratio. However, Montgomery (2009) empha-
sized that one cannot estimate interactions between control and
noise parameters since sample means and variances are, in a
crossed array structure, computed over the same levels of the noise
variables. Hence, the key component to solving robust design prob-
lems are the interactions among controllable and noise factors. The
general response surface model involving control and noise vari-
ables, organized in a combined array, may be written as:

yðx; zÞ ¼ b0 þ
Xk

i¼1

bixi þ
Xk

i¼1

biix
2
i þ

X
i<j

X
bijxixj þ

Xr

i¼1

cizi

þ
Xk

i¼1

Xr

j¼1

dijxizj þ e ð10Þ
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Assume independent noise variables with zero mean and
known variances r2

z . Furthermore, consider that noise variables
and the random error are uncorrelated. With these assumptions,
the mean and variance models can be written as (Montgomery,
2009; Myers, Montgomery, & Anderson-Cook, 2009):

Ez½yðx; zÞ� ¼ f ðxÞ ð11Þ

Vz½yðx; zÞ� ¼
Xr

i¼1

@yðx; zÞ
@zi

� �2

r2
zi
þ r2 ð12Þ

where k and r are the number of control and noise variables, respec-
tively. Now, suppose the original observations of the multiple
responses Yp, measured with the combined array, can, as discussed
in the previous section, be replaced by their principal component
scores using the transformation Pci

¼ eT
i ½ZðYpÞ�. Estimating a qua-

dratic model for the principal component scores, y(x,z)i may be
interpreted as Pc(x,z)i. One can now apply the propagation of error
principle to Pc(x,z)i in order to obtain their respective mean and
variance equations. Considering the multivariate optimization of
mean and variance, one may set the weight x and then solve the
multiple correlated responses and noise variables as follows:

Min MMSEðFiÞðxÞ¼
Ym
i¼1

x � ðEz½Pcðx;zÞi��fPCzi
Þ2þ

ð1�xÞ � r2
z �
Xr

j¼1

@Pc ðx;zÞi
@zj

� �2
þr2

" #
2
664

3
775

/i
��������
Xm�r

i¼1

/i Pn

8>><
>>:

9>>=
>>;

1Xm�r

i¼1

/i

0
BBBB@

1
CCCCA

ð13Þ
subject to : xTx6q2

with :fPCzi
¼ e1i½ZðY1jfY1

Þ� þ e2i½ZðY2jfY2
Þ� þ . . . þ epi½ZðYpjfYp Þ� ð14Þ

Pcðx; zÞi ¼ b0i þ ½rf ðxÞT �i þ
1
2

xT ½r2f ðxÞ�x
� 	

ð15Þ

i ¼ 1;2; . . . ;p; m 6 p

x ¼ ½x1; x2; . . . ; xk�
z ¼ ½z1; z2; . . . ; zr �
INPUTS
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Fig. 1. Turning process of the A
The value of fYp corresponds to a utopia point obtained as
fYp ¼ Minx2X½ŷiðxÞ� and Z represents the standardized value of
the ith response considering the target fYp , such that Z(Yp —fYp) =
[(fYp) � lYp] � (rYp)�1. Furthermore, the term /i is an exponent that
stands for the relative importance of each component used to
compose the MMSE (Fi)(x), being obtained by:

/i ¼
kiXp

i¼1

ki

 ! ð16Þ

where ki is the eigenvalue associated to the ith largest principal
component. Gomes et al. (2013) and Paiva et al. (2010) have applied
similar approach, using weighted sum though. The conditional
parameter n represents the acceptable cumulative proportion of
explanation associated with the ith largest principal components,
fixed as the practitioner so desires. So as to compare with tradi-
tional uncorrelated and correlated approaches, this method was
labeled ‘‘MMSE (Fi)’’.

Alternatively, the global multiobjective function MMSE (Fi)(x)
from Eq. (13) can be written to suppress the exponential term /i

from the expression and to adopt the geometric mean of Multivar-
iate Mean Square Error functions whose principal components
have an explanation higher than 80% (n = 0.8). This modification
allows one to evaluate the influence of /i on the optimization
results, leading to the following global multiobjective function:

MMSEðxÞ ¼
Ym
i¼1

x � ðEz½Pcðx; zÞi� � fPCzi
Þ2þ

ð1�xÞ � r2
z �
Xr

j¼1

@Pcðx;zÞi
@zj

� �2
þ r2

" #
2
664

3
775

8>><
>>:

9>>=
>>;

1
mð Þ

ð17Þ

The constraint xTx 6 q2 remains the same. With this modifica-
tion, the multivariate approach described above is hereafter
referred to as the ‘‘MMSE’’ method. It is also a point of comparison
for the other methods discussed in this work.

Once the global multiobjective function is established, its opti-
mum can be generally reached by using several methods available
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Table 1
Experimental design.

Run Control parameters Noise Responses PC-scores

x1 x2 x3 z1 Ra Ry PC1 PC2

1 200 0.20 0.150 40 0.317 2.194 �1.601 �1.018
2 240 0.20 0.150 40 0.327 2.179 �1.407 �0.727
3 200 0.40 0.150 40 0.341 2.212 �0.960 �0.494
4 240 0.40 0.150 40 0.421 2.543 2.061 0.371
5 200 0.20 0.300 40 0.366 2.575 0.830 �1.069
6 240 0.20 0.300 40 0.355 2.311 �0.297 �0.476
7 200 0.40 0.300 40 0.382 2.742 1.762 �1.224
8 240 0.40 0.300 40 0.383 2.718 1.708 �1.122
9 200 0.20 0.150 60 0.385 2.194 0.050 0.633

10 240 0.20 0.150 60 0.379 2.245 0.071 0.322
11 200 0.40 0.150 60 0.392 2.181 0.178 0.846
12 240 0.40 0.150 60 0.456 2.686 3.377 0.756
13 200 0.20 0.300 60 0.393 2.180 0.199 0.873
14 240 0.20 0.300 60 0.367 1.931 �1.243 1.053
15 200 0.40 0.300 60 0.387 2.141 �0.074 0.855
16 240 0.40 0.300 60 0.367 2.258 �0.178 �0.012
17 180 0.30 0.225 50 0.368 2.156 �0.486 0.344
18 260 0.30 0.225 50 0.382 2.181 �0.065 0.603
19 220 0.10 0.225 50 0.361 2.145 �0.692 0.210
20 220 0.50 0.225 50 0.412 2.699 2.351 �0.355
21 220 0.30 0.075 50 0.373 2.143 �0.407 0.508
22 220 0.30 0.375 50 0.352 2.151 �0.891 �0.028
23 220 0.30 0.225 50 0.347 2.175 �0.935 �0.228
24 220 0.30 0.225 50 0.351 2.184 �0.808 �0.160
25 220 0.30 0.225 50 0.349 2.175 �0.886 �0.179
26 220 0.30 0.225 50 0.351 2.179 �0.824 �0.144
27 220 0.30 0.225 50 0.351 2.177 �0.831 �0.137

Table 2
Principal Component Analysis.

Eigenvalue 1.5567 0.4433
Proportion 0.7780 0.2220
Cumulative 0.7780 1.0000

Eigenvectors PC1 PC2

Ra 0.7070 0.7070
Ry 0.7070 �0.7070

Table 3
Response surface models with noise variables.

Coefficient Ra Ry PC1 PC2

b0 0.3521 2.2081 �0.7034 �0.2125
x1 0.0050 0.0209 0.1896 0.0533
x2 0.0143 0.1158 0.7234 �0.0311
x3 �0.0025 0.0183 �0.0013 �0.1202
z1 0.0146 �0.1036 0.0178 0.6927
x1 � x1 0.0072 0.0089 0.2028 0.1447
x2 � x2 0.0100 0.0723 0.4791 0.0081
x3 � x3 0.0040 0.0036 0.1094 0.0863
x1 � x2 0.0099 0.0879 0.5261 �0.0463
x1 � x3 �0.0128 �0.0808 �0.5727 �0.0467
x1 � z1 �0.0043 0.0248 �0.0226 �0.1838
x2 � x3 �0.0103 0.0032 �0.2384 �0.2596
x2 � z1 �0.0053 �0.0150 �0.1764 �0.0787
x3 � z1 �0.0111 �0.1259 �0.6802 0.1397

Adj. R2 (%) 87.76 86.11 86.76 85.89

Residual error 0.000112 0.006650 0.2192 0.0546
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to solve nonlinear programming problems (NLP), such the General-
ized Reduced Gradient (GRG) (Haggag, 1981; M’silti & Tolla, 1993;
Paiva et al., 2012; Sadagopan & Ravindran, 1986; Tang & Xu, 2002).
GRG is considered one of the most robust and efficient gradient
algorithms for nonlinear optimization and, as an attractive feature,
it exhibits an adequate global convergence, mainly when initiated
sufficiently close to the solution (Lasdon, Waren, Jain, & Ratner,
1978). Moreover, one can note that the transformed multiobjective
function remains convex, so that a strict minimum should exist.
For these reasons, this work used the GRG.

Given the discussion above, the MMSE approach proposed in
this section may be summarized as follows:

Procedure:

Step 1: Experimental design
Establish an adequate combined array as an experimental
design, including as many control and noise variables as
desired. Run the experiments in random order and store
the responses.

Step 2: Principal Component Analysis
Conduct the Principal Component Analysis (PCA) using the
correlation matrix of original data, storing the PC-scores
(whose explained variance is at least 80%) and respective
eigenvalues and eigenvectors.

Step 3: Modeling of responses including control and noise vari-
ables
Establish equations for y(x,z)i and Pc(x, z)i using experi-
mental data for original responses and PC-scores.

Step 4: Means and variances definition
Establish equations for mean and variance of y(x,z)i and
Pc(x,z)i using Eqs. (11) and (12).

Step 5: Constrained optimization ofYp

Establish the response targets ðfYp Þ using the individual
constrained minimization of each response surface, such
as fYp ¼ Minx2X½ŷiðxÞ�.

Step 6: Choose the PC-score target values
Transform the original targets ðfYp Þ in PC-targets using
fPCi
¼
Pp

i¼1

Pq
j¼1eij½ZðYpjfYp Þ�.

Step 7: Choose means and variances weights
Choose a desired value for x, generally using the range [0;
1] and observe the value of the percentage of explanation
for PCi (/i). This value is needed only if the practitioner
needs more than one principal component.

Step 8: Build the Multivariate Mean Square Error index
With the previous steps, write the global objective func-
tion for the problem using Eq. (13) (or Eq. (17)
alternatively).

Step 9: Run the multiobjective nonlinear optimization algo-
rithm
Using the Generalized Reduced Gradient (GRG) algorithm,
minimize the value of MMSE (Fi)(x) obtained in Step 8,
using as constraints the experimental region, non-negative
variances or some other constraint gi(x) desired by the
practitioner.
The next section presents a numerical illustration of our
proposal and checks its adequacy.

5. Experiment description

This work, to achieve its aims, carried out dry turning tests of
AISI 52100 hardened steel (1.03% C; 0.23% Si; 0.35% Mn; 1.40%
Cr; 0.04% Mo; 0.11% Ni; 0.001% S; 0.01% P). AISI 52100 hardened
steel is especially recommended for the manufacturing of dies,
profiling rollers, ball and bearing cages. It is also employed in the
cold work of forming matrices, profiling cylinders, besides wear
coating purposes.
The experiments were conducted on a CNC lathe, with the max-
imum rotational speed and power of 4000 rpm and 5.5 kW. Also
employed were Wiper-mixed ceramic (Al2O3 + TiC) inserts (ISO
code CNGA 120408 S01525WH) coated with a thin layer of tita-
nium nitride (TiN; Sandvik-Coromant GC 6050). The tool holder
presented a negative geometry with ISO code DCLNL 1616H12
and an entering angle vr = 95�. The workpieces, with dimensions



Table 4
Mean and variance equations.

Coefficient Ra Ry PC1 PC2 Var Ra Var Ry Var PC1 Var PC2

b0 0.3521 2.2081 �0.7034 �0.2125 0.000214 0.010738 0.000316 0.479890
x1 0.0050 0.0209 0.1896 0.0533 �0.000124 �0.005129 �0.000804 �0.254710
x2 0.0143 0.1158 0.7234 �0.0311 �0.000154 0.003109 �0.006269 �0.109004
x3 �0.0025 0.0183 �0.0013 �0.1202 �0.000325 0.026088 �0.024177 0.193567
x1 � x1 0.0072 0.0089 0.2028 0.1447 0.000018 0.000613 0.000512 0.033798
x2 � x2 0.0100 0.0723 0.4791 0.0081 0.000028 0.000225 0.031110 0.006190
x3 � x3 0.0040 0.0036 0.1094 0.0863 0.000124 0.015845 0.462653 0.019519
x1 � x2 0.0099 0.0879 0.5261 �0.0463 0.000045 �0.000743 0.007983 0.028928
x1 � x3 �0.0128 �0.0808 �0.5727 �0.0467 0.000095 �0.006231 0.030787 �0.051369
x2 � x3 �0.0103 0.0032 �0.2384 �0.2596 0.000117 0.003776 0.239942 �0.021984

Table 5
Payoff matrices.

Payoff matrix for Ra and Ry Payoff matrix for MSE1 and MSE2

0.3382 2.0956 0.000278 0.054144
0.3490 1.9920 0.001996 0.009048
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of / 49 mm � 50 mm, were machined considering three control
variables: cutting speed (x1, m/min), feed rate (x2, mm/rev), and
depth of cut (x3, mm). Prior to machining, the workpieces were
quenched and tempered to attain three levels of hardness (40,
50, and 60 HRC) up to a depth of 3 mm below the surface. This
paper considers these hardness values as noise factor levels (z1).

The aim of different noise conditions is to simulate the general
phenomena that occur during a turning operation, reproducing, in
some sense, the decreasing of the workpiece surface hardness dur-
ing the machining operation. It is expected that the surface rough-
ness values will suffer some kind of variation due to noise
conditions. So, the main objective of the Robust Parameter Design
is to determine the control parameters capable of achieving a
Table 6
Optimization results for the MMSE (Fi) method.

x Coded parameters Responses

x1 x2 x3 Ra R

0.05 1.190 �1.098 0.456 0.3496 2
0.10 1.294 �1.041 0.270 0.3513 2
0.20 1.228 �1.104 0.322 0.3503 2
0.30 1.205 �1.115 0.364 0.3500 2
0.40 1.195 �1.111 0.408 0.3498 2
0.50 1.190 �1.098 0.456 0.3496 2
0.60 1.187 �1.077 0.512 0.3494 2
0.70 1.182 �1.048 0.578 0.3492 2
0.80 1.176 �1.008 0.657 0.3490 2
0.90 1.162 �0.953 0.756 0.3487 2
0.95 1.149 �0.910 0.826 0.3486 2

Table 7
Optimization results for the compared methods.

Weights MMSE (Fi) MMSE

MSE1a MSE2a MSE1b MSE2b

0.05 0.000348 0.023814 0.000930 0.03494
0.10 0.000419 0.020183 0.000605 0.02369
0.20 0.000395 0.020953 0.000463 0.02050
0.30 0.000380 0.021775 0.000419 0.02048
0.40 0.000364 0.022694 0.000394 0.02104
0.50 0.000348 0.023814 0.000374 0.02188
0.60 0.000330 0.025255 0.000354 0.02300
0.70 0.000309 0.027177 0.000333 0.02454
0.80 0.000287 0.029832 0.000309 0.02682
0.90 0.000263 0.033733 0.000273 0.03154
0.95 0.000248 0.036861 0.000256 0.03546
reduced surface roughness with minimal variance. The multiple
correlated responses associated with the machining process con-
sidered here were the arithmetic average surface roughness (Ra)
and the maximum surface roughness (Ry). Fig. 1 represents the
turning process of the AISI 52100 hardened steel used in this
experimental study.

Because Ra is an average value, it is not strongly correlated with
defects on the surface and not suitable for defect detection (Correa,
Bielza, & Pamies-Teixeira, 2009). Thus, most practitioners use a
second surface roughness metric, like Ry. Ry is the greatest partial
roughness value (Zi) observed among several sample lengths (le).
This parameter is used extensively by researchers because it is
capable of informing the maximum vertical deterioration of the
surface. To measure these responses, both measures of surface
roughness were assessed using a Mitutoyo portable roughness tes-
ter, model Surftest SJ 201, set to a cut-off length of 0.25 mm.

Following the experimental sequence of a combined array
(Montgomery, 2009), a CCD for k = 4 variables (x1, x2, x3, and z1)
was used as a response surface design, deleting the axial points
referent to the noise variable z1 (Step 1 of the proposed procedure).
MSE1 MSE2

y Var Ra Var Ry

.0545 0.0002 0.0199 0.000348 0.023814

.0657 0.0002 0.0147 0.000419 0.020183

.0616 0.0002 0.0161 0.000395 0.020953

.0593 0.0002 0.0172 0.000380 0.021775

.0570 0.0002 0.0185 0.000364 0.022694

.0545 0.0002 0.0199 0.000348 0.023814

.0518 0.0002 0.0217 0.000330 0.025255

.0491 0.0002 0.0239 0.000309 0.027177

.0467 0.0002 0.0268 0.000287 0.029832

.0451 0.0002 0.0309 0.000263 0.033733

.0450 0.0001 0.0340 0.000248 0.036861

WSum Beta

MSE1c MSE2c MSE1d MSE2d

8 0.001218 0.012885 0.001918 0.013791
0 0.001221 0.012505 0.001915 0.013798
8 0.001229 0.012344 0.000756 0.020821
4 0.001237 0.012265 0.000699 0.021324
6 0.001245 0.012217 0.000640 0.022165
4 0.001253 0.012196 0.000579 0.023482
6 0.001262 0.012201 0.000516 0.025509
0 0.001270 0.012233 0.000452 0.028655
0 0.000361 0.022600 0.000390 0.033669
0 0.000306 0.027190 0.000334 0.042115
1 0.000278 0.030820 0.000314 0.048679
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Fig. 2. Comparison among Pareto frontiers obtained through different methods.
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It resulted, as shown in Table 1, in 27 experiments. The surface
roughness was measured three times at each of the four positions
in the middle of the workpiece, the mean of the twelve measure-
ments were computed for sake of adequacy.

6. Results and discussion

6.1. Procedure application

A top issue of this multiobjective optimization approach regards
the correlation among the responses. For the results found in Table 1
the Pearson’s correlation coefficient is 0.557 (P-value = 0.003), rep-
resenting a moderate level of correlation with statistical signifi-
cance. Conducting a spectral decomposition on the correlation
matrix (R), one can obtain the respective eigenvalues and eigenvec-
tors of R, as shown in Table 2 (Step 2). This table shows that the first
principal component explains about 77.80% of variance–covariance
structure established between Ra and Ry. This finding allows one to
replace the original response variables with their respective princi-
pal component scores (PC1 and PC2). Once the PC-scores are
obtained, the OLS algorithm is applied, yielding the second order
models of original data y(x,z)i and principal components Pc(x,z)i.
Table 3 shows the coefficients and model’s adequacy measures
for Ra, Ry, PC1 and PC2 (Step 3). All adj. R2 values were higher than
85.00%, which can be considered excellent adjustments. Bearing
in mind previous works by Paiva et al. (2009) and Paiva et al.
(2012), where surface roughness metrics were also used as
responses, one can conclude that the inclusion of the noise variables
z1 into the design naturally decreases the values of Pearson’s
correlation coefficient and the adj. R2 values.

After the modeling task, mean and variance equations for Ra, Ry,
PC1, and PC2 were established with the help of the POE principle
(Step 4). The full quadratic models of these characteristics are
shown in Table 4. The surface roughness targets ðfYp Þ were then
calculated using the individual constrained minimization of each
response (Step 5). For the present data, fRa = 0.3382 lm and
fRy = 1.992 lm. These values were used in order to compose each
MSE(x). After individual optimization, one can obtain the values
of MSEmax

i ðxÞ and MSEI
iðxÞ. For both cases, the utopia points lead

to the Payoff matrix of Table 5. To apply the MMSE (Fi) and MMSE
methods, the original targets must be transformed into PC-targets
ðfPCi
Þ (Step 6). Thus, it was found �1.744 for PC1 and 0.154 for PC2.

Table 6 shows different chosen values for the weight x
(Step 7). For the MMSE (Fi) method, the multivariate coefficients
for the first and second principal components were /1 = 0.778
and /2 = 0.222, respectively. To conclude this setup, the nonlinear
constraint xTx 6 2.829 was considered since the axial distance (q)
for a CCD with k = 3 control factors is 1.682. With this information,
the four models discussed earlier could be tested (Step 8 and
Step 9).

6.2. Methods’ comparisons

Mean square error models typically contain fourth-order terms
which in turn may generate non-convex and supported efficient
solutions when weighted sums are used as a global optimization
criterion. Therefore, weighted sums may generate discontinuous
Pareto frontiers. On the other hand, the compromise solutions,
generated by geometric and weighted geometric means, avoid
such drawback. Table 7 summarizes the optimization results for
each multiobjective method. Moreover, Fig. 2 compares the Pareto
frontiers obtained using the four optimization approaches dis-
cussed in this paper.

Note that multivariate approaches using a multiplicative opera-
tor to agglutinate the objective functions present convex and con-
tinuous Pareto frontiers. However, this is not the case with ‘‘Beta’’
and ‘‘Weighted Sum’’ approaches, both of which generated an
extremely large gap between two consecutive weights.



Fig. 3. Mood’s median test for optimization models properties: (a) MSE1, (b) MSE2, (c) Bias, and (d) Variance.
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In addition to the mentioned analyses, Figs. 3 and 4 respectively
compare accuracy and precision of evaluated methods. Fig. 3
shows the results from Mood’s median test comparing MSE1,
MSE2, Bias, and Variance for each model. Mood’s median test is a
robust statistical procedure against outliers, to test the equality
of medians from two or more populations. It is mainly used when
the data does not follow a normal distribution. Hence, this test
provides a nonparametric alternative to the one-way Analysis of
Variance (Montgomery, 2009). Examining Fig. 3a for the property
MSE1 (mean square error for Ra), one can note significant
differences among the four approaches discussed in this paper
(P-value < 0.05). Furthermore, observing the confidence intervals
for individual medians, it is immediately clear that the MMSE
(Fi) method presents the lowest value for MSE1 and that
WSum exhibits the largest. This method presents the narrowest
95% C.I. for the medians, implying that it provides the lowest
variance among the optimization results obtained through
different weights. The first graphic in Fig. 4, where the Levene’s
nonparametric test was used, also shows this result. Thus, low lev-
els of variance among optimization results are a reflection of the
smoothness and continuity of the Pareto frontier. Indeed, these
results are somewhat expected, since Ra is a ‘‘mean-type’’ measure
and the variance of a mean tend to be less than the variance of a
difference (or range).

On the other hand, for MSE2 (mean square error for Ry), the dif-
ference is also statistically significant, but the WSum method
exhibited the lowest median (Fig. 3b). This is understandable since
Ry is a ‘‘range-type’’ metric. Besides, it can be noted that no differ-
ence was found among the three methods considering the correla-
tion between Ra and Ry, as there was an overlap of their 95%
confidence intervals. Once the variance of the optimization results
obtained with these three multivariate methods are less than the
weighted sum, the smallest values of MSE2 were achieved by the
WSum because this method ignores the correlation term (see
Fig. 4 and compare Eqs. (2) and (5)). Splitting the MSE term into
‘‘Bias’’ and ‘‘Variance’’, no significant differences were found among
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bias of the compared methods (Fig. 3c). Finally, P-value presented
in Fig. 3d identified significant difference among methods for
‘‘Variance’’ component, in which WSum method has determined
the lowest median.

It is essential to highlight that the variance of optimization
results, obtained with different weights, comes mainly from the dis-
continuity of the Pareto frontier. Thus, methods that use weighted
sums as agglutination operations exhibited discontinuous frontiers,
providing a drastic and abrupt change in the values of the MSE1 and
MSE2. This, in turns, increases substantially the amount of variance
in the data. Looking for such evidence, Levene’s test was employed
to evaluate the differences among confidence intervals for the stan-
dard deviation of each method. Similarly to the Mood’s median test,
Levene’s test is a nonparametric statistical procedure adequate to
evaluate the homoscedasticity when the data come from continu-
ous, but not necessarily normal distributions. As can be seen in
Fig. 4, methods’ variances are different (all P-values < 5%). For
MSE1, the PCA-based approaches (MMSE (Fi) and MMSE) are statis-
tically different from the weighted sums (WSum and Beta), with the
PCA-approaches presenting substantially smaller standard devia-
tions (and, in consequence, variances). Note the absence of a statis-
tical difference between WSum and Beta confidence intervals. For
MSE2, the differences were less than MSE1, but the variance values
obtained with PCA-based methods are still less than the traditional
weighted sums methods. For the ‘‘Bias’’ property, MMSE (Fi) pre-
sents results that were similar to those exhibited by weighted sums
and significantly smaller than MMSE. For ‘‘Variance’’ component,
the test has shown significant difference, mainly, due to the stan-
dard deviation provided by Beta method.

Based on the previous conclusions, more detailed analyses
among multivariate approaches were performed. In Fig. 5, the Par-
eto frontiers of the MMSE (Fi) and MMSE methods were plotted
and compared. Note that the solution region, for both methods,
is convex and the frontier is continuous. Although they seem the
same, the reference anchorage points are considerably different.
For low weights, for example, the same MSE1 and MSE2 are reached
in the MMSE (Fi) with a lower weight (x = 1.2%) than that in the
MMSE method (x = 5.0%). Around the inflection point, however,
this difference is greater: x = 5.0% for MMSE (Fi) corresponding
to a x = 20.0% for MMSE for the same values of the pair
MSE1 �MSE2. This discrepancy clearly highlights the influence of
the coefficients /i used in the MMSE (Fi) model. Indeed, when com-
pared to further components – in this case, the second one – these
coefficients emphasize the importance of the first principal compo-
nent. As PC1 contains much more information regarding variation
than PC2, its objective function should be prioritized.

Analyzing the Pareto frontiers in Fig. 5, it can be seen that some
points of the proposed method are apparently dominated by MMSE
method. Nevertheless, besides the previous explanation, it is
important to evidence that there is variation associated to those
estimates. Taking into consideration that the objective functions
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Table 8
Manova hypothesis test for MMSE (Fi) (w = 1.2%) and MMSE (w = 5.0%) methods.

MANOVA: Optimization Method versus MSE1 and MSE2 (s = 1; m = 0; n = 13.5)

Criterion Test F DF Num DF Denom P-value

Wilks’ 0.98488 0.223 2 29 0.802
Lawley–Hotelling 0.01535 0.223 2 29 0.802
Pillai’s 0.01512 0.223 2 29 0.802
Roy’s 0.01535

Pearson Correlation MSE1 � MSE2: 0.732 P-value: 0.000
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are response surface obtained from experimental data, there are
standard errors associated to expected values of the regression
coefficients. Based on this particularity, it is reasonable to admit
that there is a population of objective functions. Hence, a
confidence interval was supposed to be assigned to each frontier
point. Therefore, if there is an overlapping between MMSE and
MMSE (Fi) confidence intervals, it is not reasonable to affirm that
there is dominance of a particular frontier over another one.
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For sake of comparison, a simulation study was performed in
order to compare MMSE (Fi) and MMSE Pareto frontiers. Fig. 6
shows the combined confidence interval for MSE1 and MSE2 esti-
mated by the multivariate approaches. To illustrate how similar
two estimates are, the points A1 (MMSE: w = 5.0%) and A1 (MMSE
(Fi): w = 1.2%) highlighted in Fig. 5 were compared by using a mul-
tivariate analysis of variance. As can be seen from Table 8, the
hypothesis tests have emphasized that there were no statistical
difference of MSE1 and MSE2 estimated from the multivariate
approaches.

The comparison study has evidenced that MMSE (Fi) provided
better properties in relation to the other methods. Hence, another
analysis was conducted to project MMSE (Fi) results into the space
of original variables. As emphasized earlier, the multiplicative
operator used in MMSE approaches avoided the lack of continuity
in the frontier. Fig. 7, for instance, represents an optimum obtained



Table 9
Confirmation test’s measurements.

Hardness i Ra Ra mean Ry Ry mean

j = 1 j = 2 j = 3 j = 4 j = 1 j = 2 j = 3 j = 4

60 1 0.35 0.34 0.35 0.35 0.348 2.04 2.00 2.09 2.04 2.043
2 0.36 0.34 0.36 0.35 0.353 2.05 2.03 2.06 2.06 2.050
3 0.35 0.35 0.34 0.34 0.345 2.05 2.07 2.00 2.02 2.035
4 0.36 0.34 0.34 0.35 0.348 2.07 2.06 2.07 2.06 2.065
5 0.35 0.34 0.34 0.34 0.343 2.08 2.04 2.05 2.05 2.055

50 1 0.35 0.35 0.35 0.34 0.348 2.08 2.05 2.07 1.98 2.045
2 0.36 0.34 0.36 0.33 0.348 2.08 2.09 2.08 2.00 2.063
3 0.36 0.33 0.37 0.36 0.355 2.12 1.99 2.06 2.07 2.060
4 0.35 0.34 0.35 0.36 0.350 2.07 2.04 1.98 2.11 2.050
5 0.36 0.35 0.36 0.34 0.353 2.07 2.08 2.07 2.05 2.068

40 1 0.34 0.37 0.35 0.36 0.355 2.03 2.08 2.10 2.07 2.070
2 0.34 0.36 0.35 0.34 0.348 2.07 2.13 2.04 2.03 2.068
3 0.34 0.33 0.36 0.37 0.350 2.05 1.99 2.06 2.05 2.038
4 0.35 0.33 0.35 0.36 0.348 2.11 1.99 2.04 2.10 2.060
5 0.36 0.35 0.35 0.35 0.353 2.07 2.08 2.07 2.10 2.080

LCB 0.3473 2.0493
UCB 0.3513 2.0637
MMSE (Fi) 0.3496 2.0545
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Fig. 10. Levene’s tests for (a) Ra and (b) Ry.
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by the MMSE (Fi) with x = 0.70, projected in the plane of average
surface roughness (Ra). It is easy to see that the MMSE (Fi)
optimum is quite close to the stationary point of Ra surface. Accord-
ing to Shin et al. (2011), a bi-objective optimization problem is con-
vex if the feasible set x is convex and both objective functions are
convex. In this case, the Pareto set can be viewed as a convex curve
in the space of q2. Furthermore, the constraint xTx � q2

6 0 is con-
vex since it represents a hypersphere of radius q. The graphics pre-
sented in Fig. 8 show convex curves of MSE1 and MSE2, written in
terms of x1, x2, and x3 obtained by the MMSE (Fi) method. These
three variables belong to the space of solution q2.

Taking into account not only the methods’ comparative study
for accuracy and precision, but also the detailed analyses among
multivariate methods, it can be concluded that the MMSE (Fi)
approach has presented lower variance values than did the other
methods. Therefore, confirmation experiments were performed to
investigate the adequacy of the proposed multiobjective optimiza-
tion method.

6.3. Confirmation runs

Before designing and running confirmation experiments, power
and sample size capabilities were evaluated to ensure enough cer-
tainty detecting differences of magnitude 0.01 for Ra and 0.1 for Ry.
Fig. 9a and b respectively present power curves for Ra and Ry,
based on the variances with w = 0.5 in Table 6. Examining the
power curves, 19 samples are able to detect differences of magni-
tude 0.015 for Ra and 0.15 for Ry, with power = 0.82%. As a result,
20 samples were measured for each hardness level. Fig. 9c
illustrates a measurement result obtained by the roughness tester.

In order to validate the effectiveness of the proposed MMSE (Fi)
method, a set of confirmation experiments was then carefully car-
ried out, machining i = 5 workpieces, measuring j = 4 repetitions on
the middle of the bars, for each noise condition (hardness 40, 50
and 60 HRC). Table 9 shows roughness measurements of Ra and
Ry, according to the uncoded experimental condition x1 = 244,
x2 = 0.19, and x3 = 0.26, using w = 0.50 in Table 6.

To verify whether Ra and Ry means are at their targets and the
variability around those targets are as small as possible, accuracy
and precision studies were conducted. Based on a multivariate
analysis of variance for Ra and Ry means, the optimal experimental
condition has proved to be insensible, at 5% significance, to the dis-
tinct hardness levels of workpieces. Moreover, 95% confidence
intervals for Raand Ry means were estimated and their results
are shown in Table 9. As expected, the optimum provided by MMSE
(Fi) method was estimated inside the confidence bounds, LCB
(lower confidence bound) and UCB (upper confidence bound).

Finally, variability around the optimum result was evaluated
with Levene’s tests. As shown in Fig. 10, no significant differences of
roughness parameters Ra (P-value = 0.377) and Ry (P-value = 0.307)
were found among hardness levels. In summary, the proposed
multivariate optimization approach with combined array design
has revealed to be an effective strategy for determining robustness
to this dry turning process of AISI 52100 hardened steel.
7. Conclusions

This paper presented a new approach for robust multiobjective
optimization of experiments considering Principal Component
Analysis and the propagation of error principle. For this sake, PCA
was employed in the modeling of multi-response experiments,
and, in optimization procedure, POE was used to account for noise
variables.

The POE principle allows for inference interactions among
control and noise variables, such that optimization results may
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differ according to varying noise scenarios. PCA was used to avoid
correlation issues in multi-response analysis.

The approach proposed in this paper, labeled MMSE (Fi), was
then compared to other methods for multiobjective optimization,
such as MMSE, WSum and Beta, by means of a turning experiment
of AISI 52100 hardened steel.

The results showed the MMSE (Fi) method for multiobjective
optimization to be a useful and reliable approach. It presented con-
vex solution regions, continuous and smooth Pareto frontiers, non-
dominated solutions, few variances and a lack of frontier peaks or
disruptions. For the AISI 52100 hardened steel turning case, the
surface roughness mean and variance values were quite small
(for any weight used), being compatible with products meeting
the highest levels of quality.
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